

British Chapter of ISMRM 26th Postgraduate Symposium

18th May 2018

St. Mary's Campus, Imperial College London

Dear Participant,

We would like to welcome you to the 26th postgraduate symposium of the British Chapter of ISMRM and to Imperial College London. This day-long meeting will be a showcase of research conducted by junior researchers (both post-graduate students and junior postdocs) in the UK - a platform on which to present their

work, with fantastic networking opportunities. Beside an extensive scientific program, you will also have the opportunity to socialize and network during the breaks and lunch, with the option to continue the discussion over drinks after the conference. We strongly encourage everyone to meet and engage with presenters during the poster sessions, and to visit all sponsor booths during lunch and the coffee breaks.

For the first time, this year there will also be a 1-hour session to discuss career paths and options after your PhD or post-doc. Speakers presenting during this session, all of which have completed a PhD or post-doc, will share their experiences from years of working in academia, clinical science, consultancy and research management. They will also be around during lunch, so please do make sure to have a chat with them if their career path is something you are interested in. We hope that this meeting will help you to enhance your career, form productive new collaborations, and develop innovative scientific research.

We would like to take this opportunity to thank our sponsors for their generous contributions: Bruker (Platinum), Siemens (Platinum), GE (Platinum), Imaging Equipment Ltd (Gold), Leeds Test Objects (Silver), Xinapse Systems (Bronze) and PulseTeq Ltd (Bronze). We would also like to thank Prof Penny Gowland for opening and closing the meeting; the speakers in the careers session; the British Chapter of the ISMRM committee, particularly Dr Po-Wah So, for their support; the reviewers, for rating all abstracts; the chairs, for moderating the scientific sessions; the panels choosing the abstracts for the prizes; and, most importantly, the authors and presenters of the abstracts we received this year.

Finally, the organisation of this meeting would have been impossible without all the hard work from this year's organising committee over the past year. Their commitment to creating a high-quality programme for this symposium has been truly inspiring.

Enjoy the Symposium!

Matthew Grech-Sollars
Organising Committee Coordinator

British Chapter of ISMRM 26th Postgraduate Symposium Organising Committee

Please speak to us if you have any queries!

All of us will be able to help you out. However, if you have a specific query related to one of the sections below, please do not hesitate to contact the lead for the specific section directly.

Matthew Grech-Sollars
Head of Organising
Committee &
Lead on Career Talks

Imperial College London m.grech-sollars@imperial.ac.uk

Joshua Freedman
Lead on Social events

Institute of Cancer Research joshua.freedman@icr.ac.uk

Oliver Gurney-Champion

Lead on Posters

Institute of Cancer Research
oliver.gurneychampion@icr.ac.uk

Pete Lally
Lead on Welcoming and
Logistics

Imperial College London p.lally@imperial.ac.uk

Charlotte Pretzsch

Lead on Orals and Poster

Pitches

King's College London charlotte.pretzsch@kcl.ac.uk

Priyanka Sakhavalkar Lead on Sponsors

University of Liverpool priyanka.sakhavalkar@liverpool.ac.uk

Jodi Watt Lead on Prizes

University of Nottingham jodi.watt@nottingham.ac.uk

Programme

9:50 – 10:20 Registration, Tea and Coffee St Mary's Medical School G62 – Committee Room

10:20 - 10:25 General Introduction and Welcome

Dr Matthew Grech-Sollars (Imperial College London)
St Mary's Medical School Anthony de Rothschild Lecture Theatre (Floor 2)

10:25 - 10:30 Welcome

Prof Penny Gowland (Chair of the BC-ISMRM, The University of Nottingham)

10:30 – 11:30 Oral Session 1: Cardiac Imaging and Perfusion

Moderators: Isabel Dregely (KCL) and Ben Statton (Imperial College London)

O1. Mildronate Increases PDH-Flux in Control Hearts, but Fails to Show Metabolic Changes in Streptozotocin-Treated Diabetic Hearts using Hyperpolarized MRS.

<u>Dragana Savic</u>¹, Lorenz Holzner¹, Vicky Ball¹, M. Kate Curtis¹, Lisa Heather¹ & Damian Tyler¹. ¹University of Oxford, UK.

O2. Highly-Accelerated Whole-Heart 3D CMRA with Sub-Millimeter Isotropic Resolution and 3D-PROST Reconstruction.

<u>Aurélien Bustin</u>¹, Giulia Ginami¹, Imran Rashid¹, Teresa Correia¹, Tevfik F. Ismail¹, Radhouene Neji^{1,2}, René M. Botnar¹, Claudia Prieto¹.

¹School of Biomedical Engineering and Imaging Sciences, King's College London, UK; ²MR Research Collaborations, Siemens Healthcare Limited Frimley, UK.

O3. Vessel-encoding improves compressed sensing reconstruction of arterial spin labelling angiograms.

S. Sophie Schauman¹, Mark Chiew¹, Thomas W. Okell¹.

¹Wellcome Centre for Integrative Neuroimaging, FMRIB, NDCN, University of Oxford, UK.

O4. Comparison of Tofts and Shutter Speed Model for DCE-MRI in patients with Brain Glioma.

<u>Marianna Inglese^{1,2}</u>, Lesley Honeyfield³, Eric Aboagye¹, Adam D. Waldman^{4,5}, Matthew Grech-Sollars^{1,3}.

¹Department of Surgery and Cancer, Imperial College London, UK; ²Department of Computer, Control and Management Engineering Antonio Ruberti, La Sapienza University of Rome, Italy; ³Department of Imaging, Imperial College London Healthcare NHS Trust, UK; ⁴Department of Medicine, Imperial College London, UK; ⁵Centre for Clinical Brain Sciences, University of Edinburgh, UK.

O5. Characterising and correcting the effect of motion on quantitative CBF measured with multishot 3D GRASE ASL.

<u>Jack Highton</u>¹, Enrico De Vita², Jonathan Schott³, David L. Thomas³.

¹Department of Medical Physics and Biomedical Engineering, University College London, UK; ²Department of Biomedical Engineering, King's College London, UK; ³University College London Institute of Neurology, UK.

11:30 – 11:50 Poster Pitches Session 1 (P1 - P13); Moderator: Tobias Wood (KCL)

11:50 – 12:00 Vendor Pitches

12:00 - 13:00 Career Talks

Academia – Dr Eleftheria Panagiotaki (UCL)

Clinical Science – Dr Mary Finnegan (Imperial College Healthcare NHS Trust)
Coaching, Consultancy and Training – Dr Emma Williams (EJW Solutions Limited)
Research Management – Dr Jamie Meredith (Imperial College London)

13:00 – 13:20 Lunch and Networking

G62 and G64

13:20 – 13:50 Posters Session 1 (P1-P13), Lunch and Networking *G62*

14:00 – 15:00 Oral Session 2: Susceptibility and Semi-automated Approaches

Moderators: Flavio dell'Acqua (KCL) and Catarina Rua (University of Cambridge)

O6. Magnetic Susceptibility Mapping (SM) Reveals Altered Venous Oxygen Saturation (SvO₂) in Patients with Brain Arteriovenous Malformations (AVMs).

Emma Biondetti¹, Alvaro Rojas Villabona², Rolf Jäger², David L. Thomas^{2,3} & Karin Shmueli¹.

¹Department of Medical Physics & Biomedical Engineering, University College London, UK; ²Neuroradiological Academic Unit, Department of Brain Repair & Rehabilitation, Institute of Neurology, University College London, UK; ³Leonard Wolfson Experimental Neurology Centre, Institute of Neurology, University College London, UK.

O7. Susceptibility-weighted MRI provides predictive biomarkers of response to vascular endothelial growth factor receptor inhibition in the Th-MYCN model of neuroblastoma

<u>K. Zormpas-Petridis</u>¹, M. D. Blackledge¹, L. Chesler¹, Y. Yuan¹, S. P. Robinson¹ & Y. Jamin¹.

¹The Institute of Cancer Research, London and The Royal Marsden NHS Trust, UK.

O8. Examining Regional Brain Iron Concentrations in Children with Sickle Cell Anaemia using MRI Susceptibility Mapping.

Russell Murdoch¹, Jamie Kawadler², Mboka Jacob³, Fenella Kirkham⁴, Karin Shmueli¹.

¹Medical Physics and Biomedical Engineering, University College London, UK; ²Imaging and Biophysics Unit, University College London Institute of Child Health, UK; ³Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; ⁴Neurosciences Unit, University College London Institute of Child Health, UK.

O9. Semi-Automatic Registration of Histological Images to Post-Mortem MRI.

Istvan N. Huszar^{1,2}, Karla L. Miller^{1,2}, Menuka Pallebage-Gamarallage², Olaf Ansorge²,
Christopher Mirfin³, Mattias P. Heinrich⁴, and Mark Jenkinson^{1,2}.

*Iwellcome Centre for Integrative Neuroimaging (WIN), FMRIB, University of Oxford, UK;

*Inversity of Oxford, UK; *Inversity of Oxford, UK

Mansfield Imaging Centre, University of Nottingham, UK⁴; Institute of Medical Informatics, Universität Lübeck, Germany.

O10. Accelerated 3D T2 mapping with dictionary-based matching for prostate imaging.

<u>Elisa Roccia</u>¹, Rohini Vidya Shankar¹, Radhouene Neji¹, 2, Gastao Cruz¹, Rene Botnar¹, Claudia Prieto¹, Vicky Goh³, Isabel Dregely¹.

¹Department of Biomedical Engineering, King's College London, UK; ² Siemens Healthcare Limited Frimley, UK; ³Department of Cancer Imaging, King's College London, UK.

15:00 – 16:00 Oral Session 3: Low/High field Imaging and Spectroscopy

Moderators: Maureen Dumba (Imperial NHS) and Patrick Hales (UCL)

O11. Improved detection of pancreatic cancer with an AI 3D Mouse Atlas Tool using low field MRI.

<u>Joseph Brook¹</u>, S. Macholl², J. Candido³, R. Arkell³, J. Hesterman⁴, J. Sosabowski¹.

¹Centre of Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK; ²Contract Research, inviCRO, London, UK; ³Centre of Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, UK; ⁴Image Analysis, inviCRO, Boston, USA.

O12. Human Cardiac 31P-MRS at 7T: a reproducibility study.

<u>Jane Ellis</u>¹, Ladislav Valkovic¹, Lucian A. B. Purvis¹, William T. Clarke¹, Christopher T. Rodgers^{1,2}.

¹University of Oxford, UK; ²Wolfson Brain Imaging Centre, University of Cambridge, UK.

- O13. Predictors and Evolution of Radiotherapy-Induced Cerebral Microbleeds with White Matter Changes in Adult Brain Tumor Patients: a 7T MRI study.

 Melanie A. Morrison¹, C. P. Hess¹, J. Clarke¹, N. Butowski¹, S. Chang¹, J. M. Lupo¹.

 ¹University of California San Francisco, USA.
- O14. Imaging white matter damage after traumatic brain injury: a high-field multimodal approach in a rat model.

<u>Maria Yanez Lopez¹</u>, Nicoleta Baxan¹, Cornelius Donat¹, Magdalena Sastre¹. ¹David Sharp Department of Medicine, Imperial College London, UK.

O15. Metabolic assessment of normothermically perfused ex vivo livers by multi-nuclear magnetic resonance imaging and spectroscopy.

<u>Liam Young</u>¹, Carlo Ceresa², Jack Miller³, Ladislav Valkovic¹, Daniel Voyce⁴, Justin Lau³, Annemarie Weissenbacher², Jane Ellis¹, Ferenc Mozes¹, Damian Tyler³, Peter Friend², Constantin Coussios⁵, Christopher Rodgers^{1,6}.

¹OCMR, RDM Cardiovascular Medicine, University of Oxford, UK; ²Nuffield Dept Surgical Sciences, University of Oxford, UK; ³Dept of Physiology, Anatomy and Genetics, University of Oxford, UK; ⁴OrganOx Ltd, UK; ⁵Institute of Biomedical Engineering, University of Oxford, UK; ⁶Wolfson Brain Imaging Centre, University of Cambridge, UK.

16:00 – 16:15 Poster Pitches Session 2 (P14-P26); Moderator: Tobias Wood (KCL)

16:15 – 16:50 Coffee and Posters Session 2 (P14-P26) *G62 and G64*

17:00 – 18:00 Oral Session 4: Diffusion Imaging

Moderators: Gareth Barker (KCL) and Clare Gibbard (UCL)

O16. Hypervoxels for Tract-based Cluster Analysis.

<u>Pedro A. Luque Laguna^{1,2}</u>, Francisco de Santiago Requejo¹, Steven Williams², Laura H. Goldstein³, Marco Catani¹, and Flavio Dell'Acqua^{1,2,4}.

¹Natbrainlab, Forensic and Neurodevelopmental Science, King's College London, UK; ²Department of Neuroimaging, King's College London, UK; ³Department of Psychology, King's College London, UK; ⁴The Sackler Institute for Translational Neurodevelopment, King's College London, UK.

O17. Detection of prostate cancer on VERDICT DW-MRI using convolutional neural networks.

<u>Eleni Chiou</u>¹, Francesco Giganti^{3,4}, Elisenda Bonet Carne^{1,2}, Shonit Punwani², Iasonas Kokkinos¹, Eleftheria Panagiotaki¹.

¹Department of Computer Science, University College London, UK; ²Centre for Medical Imaging, Division of Medicine, University College London, UK; ³Department of Radiology, University College London Hospital NHS Foundation Trust, UK; ⁴Division of Surgery & Interventional Science, University College London, UK.

O18. Variable density interleaved spiral readouts for high resolution in-vivo diffusion tensor cardiovascular magnetic resonance.

<u>Margarita Gorodezky</u>¹, Andrew D. Scott¹, Pedro F. Ferreira¹, Sonia Nielles-Vallespin¹, Peter D. Gatehouse¹, Dudley J. Pennell¹, David N. Firmin¹.

¹Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, National Heart and Lung Institute, Imperial College London, UK.

O19. Principal component analysis for model-free denoising of multi b-value diffusion-weighted MRI images.

Oliver J. Gurney-Champion¹, D. J. Collins¹, A. Wetscherek¹, M. Rata¹, U. Oelfke¹, K. Harrington¹ & M. R. Orton¹.

¹The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK.

O20. Multi-platform reproducibility of advanced diffusion weighted MRI parameters in phantoms and healthy volunteers.

Shah Islam¹, Matthew Grech-Sollars², Matthew Orton³, Adam Waldman⁴

¹Department of Medicine, Imperial College London, UK; ²Department of Surgery and Cancer, Imperial College London, UK; ³MRI physics group, Institute of Cancer Research, UK; ⁴Centre for Clinical Brain Sciences, University of Edinburgh, UK.

- 18:00 18:10 Election of Trainee Member for the BC-ISMRM Committee
- 18:10 18:20 Presentation of Prizes
- 18:20 18:30 Closing Remarks Prof Penny Gowland
- 19:00 Evening Reception KuPP, 53 Merchant Square, London W2 1AS

Poster Session 1: P1-P13

P1. Investigating visual pathways in children undergoing epilepsy surgery and associated deficits

<u>Luis Miguel Lacerda¹</u>, Martin Tisdall², Gavin Winston³, Sian Handley⁴, Alki Liasis⁴, Chris A. Clark¹

¹Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, UK;

²Neurosurgery, UCL Great Ormond Street Institute of Child Health, London, UK; ³Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK; ⁴Ophthalmology, UCL Great Ormond Street Institute of Child Health, London, UK.

P2. Investigating Local and Global Connectivity in Temporal Lobe Epilepsy

Bianca De Blasi¹, Ilaria Boscolo Galazzo², Anna Barnes³, Matthias Koepp⁴
¹University College London, UK; ²University of Verona, Italy; ³UCLH Institute of Nuclear Medicine, UK; ⁴Institute of Neurology, University College London, UK.

P3. Subnetwork Classification Methods

Elizabeth C. A. Powell^{1,2}, Ferran Prados^{2,3}, Baris Kanber^{2,3}, Wallace Brownlee², Sara Collorone², Sebastien Ourselin³, Olga Ciccarelli², Ahmed Toosy², Jonathan D Clayden⁴, Claudia AM Gandini Wheeler-Kingshott²

¹Medical Physics and Biomedical Engineering, University College London, UK; ²Queen Square MS Centre, University College London, UK; ³Translational Imaging Group, University College London, UK; ⁴Great Ormond Street Institute of Child Health, University College London, UK.

P4. The Analysis of High Resolution Diffusion Tensor Imaging Data to Characterise a Mouse Model of Intellectual Disability

<u>William Middleham¹</u>, Thomas Leather¹, Harish Poptani¹
¹Centre for Preclinical Imaging, University of Liverpool, UK.

P5. Demonstrating time-dependent diffusion MR in phantoms

<u>Laurent Blom¹</u>, Clémentine Lesbats¹, Harish Poptani¹
¹Centre for Preclinical Imaging, University of Liverpool, UK.

P6. High resolution with online reconstruction of in vivo cardiac DTI

Malte Röhl¹, P. F. Ferreira¹, P. Gatehouse¹, D. N. Firmin¹ Royal Brompton Hospital, UK.

P7. Cerebellar white matter disruption in AD patients: a Diffusion Tensor Imaging study

<u>Sofia Toniolo¹</u>, L. Serra², G. Olivito², C. Marra³, M. Cercignani¹, M. Bozzali¹

¹Clinical Imaging Sciences Centre, Brighton, UK; ²Neuroimaging Laboratory, Santa Lucia Foundation, Italy; ³Institute of Neurology, Catholic University, Italy.

P8. Development of an Automated Quality Control Method for Dynamic Susceptibility Contrast (DSC-) MRI

Stephen Powell^{1,2,3}, Stephanie Withey^{2,3,4}, Yu Sun^{2,3,5}, Andrew Peet^{2,3}

¹Physical Sciences for Health CDT, University of Birmingham, UK; ²Institute of Cancer and Genomic Sciences, University of Birmingham, UK; ³Birmingham Children's Hospital, UK; ⁴University Hospitals

Birmingham NHS Foundation Trust, UK; ⁵School of Biological Sciences and Medical Engineering, Southeast University, China.

P9. Susceptibility Mapping in Normal Bone Marrow and Fat Metaplasia

Anita Karsa¹, Tim Bray^{2,4}, Alan Bainbridge³, Shonit Punwani², Margaret A. Hall-Craggs², Karin Shmueli¹
¹Department of Medical Physics and Biomedical Engineering, University College London, UK; ²Centre for Medical Imaging, University College London, UK; ³Department of Medical Physics, University College London Hospitals, UK; ⁴Arthritis Research UK Centre for Adolescent Rheumatology, University College London, UK.

P10. The Alignment Index (AI): A Collagen fibre orientation distribution analysis

<u>Karyn E Chappell</u>¹, Catherine Van Der Straeten¹, Wladyslaw Gedroyc¹, Donald McRobbie¹, Djordje Brujic²
¹Department of Surgery and Cancer, Imperial College London, UK; ²Department of Mechanical Engineering, Imperial College London, UK.

P11. Accelerating Golden Angle-Sampled Low-Rank FMRI with Low-Resolution Constraints

<u>Harry Mason</u>¹, Karla Miller¹, Mark Chiew¹ ¹University of Oxford, UK.

P12. Locally Low Rank Regularization for Magnetic Resonance Fingerprinting

<u>G. Cruz¹</u>, A. Bustin¹, O. Jaubert¹, T. Schneider², R. M. Botnar¹, C. Prieto¹

¹School of Biomedical Engineering and Imaging Sciences, King's College London, UK; ²Philips Healthcare, Guilford, UK.

P13. Rigid motion corrected low rank magnetic resonance fingerprinting

<u>G. Cruz¹</u>, O. Jaubert¹, S. Malik¹, T. Schneider², R. M. Botnar¹, C. Prieto¹

¹School of Biomedical Engineering and Imaging Sciences, King's College London, UK; ²Philips Healthcare, Guilford, UK.

Poster Session 2: P14-P26

P14. Motion Estimation using the Scattering of 8-channel pTx Coils at 7T MRI

<u>Sven H.F. Jaeschke¹</u>, Daniel Papp², Matthew D. Robson¹, Aaron T. Hess¹

¹University of Oxford Centre for Clinical Magnetic Resonance Research, UK; ²The Wellcome Centre for Integrative Neuroimaging, UK.

P15. Minimum-TR pulse design for rapid gradient echo sequences

<u>Samy Abo Seada</u>¹, Arlan Beqiri¹, Anthony N. Price¹, Joseph V. Hajnal¹, Shaihan J. Malik¹ School of Biomedical Engineering and Imaging Sciences, King's College London, UK.

P16. Water cycled single voxel spectroscopy for cardiac ¹H MRS

Belinda Ding¹, Ferenc Mozes¹, Ladislav Valkovic¹, Christopher Rodgers^{1, 2}

1 Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, UK: 2

¹Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, UK; ²Wolfson Brain Imaging Centre, University of Cambridge, UK.

P17. Association between pharmacokinetic parameters from DCE-MRI and metabolic parameters from dynamic 18F-fluoromethylcholine PET in human brain glioma.

<u>Marianna Inglese</u>^{1,2}, Matthew Grech-Sollars^{1,3}, Katherine Ordidge³, Vijay Vaja⁴, Lesley Honeyfield³, Sameer Khan³, Tara Barwick^{1,3}, Eric Aboagye¹, Adam D Waldman^{4,5}

¹Department of Surgery and Cancer, Imperial College London, UK; ²Department of Computer, Control and Management Engineering Antonio Ruberti, La Sapienza University of Rome, Italy; ³Department of Imaging, Imperial College Healthcare NHS Trust, UK; ⁴Department of Medicine, Imperial College London, UK; ⁵Centre for Clinical Brain Sciences, The University of Edinburgh, UK.

P18. Diffusion-weighted and kurtosis MRI in a glioma rat model

Clémentine Lesbats¹, Claire Kelly¹, Harish Poptani¹

¹The University of Liverpool, UK.

P19. Real-Data Reconstruction to Remove Rician Bias from DKI of the Prostate

Rosie J Goodburn¹, Andrew N Priest¹

¹Cambridge University Hospitals NHS Foundation Trust, UK.

P20. Detecting Prostate Cancer with neural networks on multi-echo T2 images

<u>William Devine</u>¹, Francesco Giganti², Edward Johnston¹, Shonit Punwani¹, Daniel C. Alexander³, David Atkinson¹

¹Centre for Medical Imaging, University College London, UK; ²Department of Radiology, University College London Hospital NHS Foundation Trust, UK; ³Centre for Medical Image Computing, University College London, UK.

P21. Oxygen enhanced MRI for imaging hypoxia in head and neck cancer xenografts

Elise Lepicard¹, Jessica K. R. Boult¹, Yann Jamin ¹, Konstantinos Zormpas-Petridis¹, Adam K. Featherstone², Rafal Panek³, Carol Box¹, James P. B. O'Connor⁴, Simon P. Robinson¹

¹ Division of Radiotherapy and Imaging, The Institute of Cancer Research, UK; ²Centre for Imaging Sciences, University of Manchester, UK; ³Department of Medical Physics and Clinical Engineering, Nottingham University Hospitals, UK; ⁴Institute of Cancer Sciences, University of Manchester, UK.

P22. Dosimetric Evaluation of Midposition Pseudo-CT for MR-only Lung Radiotherapy Treatment planning

<u>Joshua N. Freedman^{1,2}</u>, Hannah Bainbridge³, Andreas Wetscherek¹, David J. Collins², Martin O. Leach², Marc Kachelrieß⁴, Simeon Nill¹, Fiona McDonald³, Uwe Oelfke¹.

¹Joint Department of Physics, Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, UK; ²CR UK Cancer Imaging Centre, Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, UK; ³Joint Department of Radiotherapy, Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, UK; ⁴Medical Physics in Radiology, The German Cancer Research Center (DKFZ) Heidelberg, Germany.

P23. Slice-by-slice comparison of quantitative small bowel motility metrics from dynamic MRI in Crohn's disease patients with a range of symptom severities

Ruaridh M. Gollifer¹, Alex Menys¹, Frans M. Vos^{2,3}, Jaap Stoker², Stuart A. Taylor¹, David Atkinson¹

¹Centre for Medical Imaging, University College London, UK; ²Department of Radiology, Academic Medical Center (AMC), Netherlands; ³Quantitative Imaging Group, Delft University of Technology, Netherlands.

P24. A new MR-based Perianal Crohn's disease activity score

Ali Alyami^{1,2,3}, Caroline Hoad^{2,3}, Penny Gowland³, Uday Bannur⁴, Khalid Latief⁴, and Gordon Moran^{1,2}

¹Nottingham Digestive Diseases Centre and NIHR Nottingham Biomedical Research Centre at Nottingham University Hospitals NHS Trust and University of Nottingham, UK; ²Diagnostic Radiology Department, Jazan University, Saudi Arabia; ³Sir Peter Mansfield Imaging Centre, University of Nottingham, UK; ⁴Diagnostic Radiology Department, Queens' Medical Centre Campus, UK.

P25. T1 and T2* measurements in the liver and kidneys at 3 and 7 Tesla

Emma Doran¹, Stephen Bawden¹, Susan Francis¹, Richard Bowtell¹, Penny Gowland¹ Sir Peter Mansfield Imaging Centre, University of Nottingham, UK.

P26. Measuring T2 and ADC of abdominal lymph nodes

Hannah G. Williams¹, Caroline L. Hoad^{1,2}, Robert Scott^{2,3}, Luca Marciani^{2,3}, Penny A. Gowland^{1,3}
¹Sir Peter Mansfield Imaging Centre, University of Nottingham, UK; ²NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, UK; ³Nottingham Digestive Diseases Centre, University of Nottingham, UK.